ot J. Hewt Muss Transter.
Printed in Great Britain

Val. 35, No. 12, pp. 3345-3351. 1992

0017 9310:92 $5.00+0.00
« 1992 Pergamon Press Lid

Hybrid Laplace transform technique for
Stefan problems with radiation—
convection boundary condition

HAN-TAW CHEN and JAE-YUH LIN

Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan 701,
Republic of China

(Received 13 September 1991 and in final form 31 January 1992)

Abstract—The hybrid application of the Laplace transform technique and the finite difference method
(FDM) to one-dimensional Stefan problems involving the radiative and convective boundary condition is
studied. The radiative term is linearized by Taylor’s series approximation, and then the above hybrid
method is used. This scheme is obtained by the use of the Laplace transform technique for the time-
dependent terms and the fixed-grid FDM for space domain. It can be found from various illustrated
cxamples that excellent agreement is obtained between the present results and those of early works. For
the phase-change problem subjected to the nonlinear boundary condition, three or four iterations are
required to obtain a convergent result at a specific time. The present analysis also demonstrates that the
application of the Laplace transform technique is no longer limited to phase-change problems with the
linear boundary condition.

INTRODUCTION

THE TRANSIENT heat conduction problem involving a
change of phase due to melting or solidification is
of particular interest in many industrial applications,
such as in the casting of metals, the freezing of food
and the making of ice, etc. The analytical solution of
the phase-change problem is inherently difficult to
determine because the location of the moving interface
is not known a priori. However, the study of the
phase-change problem has become a highly popular
subject in recent years duc to its vast applications in
the areas of thermal energy storage or metallurgical
solidification. An extensive review of the methods for
solving the phase-change problems is given in ref. [1].
A few exact solutions of phase-change problems are
currently available {2, 3]. These exact solutions are
restricted to the problems of heat transfer in a semi-
infinite region and are subjected to simple boundary
or initial conditions. For most phase-change
problems, approximate and numerical methods are
commonly employed. Approximate solutions are
practical when great accuracy is not required. Various
approximate techniques, such as the heat balance inte-
gral method, the variational method, the perturbation
method and the series expansion method, have been
proposed. A brief discussion of these approximate
methods is given in ref. [1].

Numerical methods are more practical in solving
the phase-change problem. Based on the choice of the
dependent variables used in the energy conservation
equation, the numerical formulations can be classified
into two main categories. The first formulation is
regarded as the temperature-based method. In this

general classical method, the temperature is the depen-
dent variable and energy conservation equations are
written respectively for the solid and liquid regions.
The major difficulty of this formulation is the rep-
resentation of the discontinuity of the temperature
gradient at the liquid-solid interface. To overcome
this difficulty, the second formulation, which uses the
enthalpy or the apparent heat capacity as a dependent
variable, is employed. However, the application of the
enthalpy formulation to the phase-change problem
often causes a serious numerical instability in the tem-
perature distribution near the phase-change boundary
as well as at the position of the boundary itself,
because an enthalpy discontinuity exists at the
location of the liquid-solid interface s(¢) [4]. The
present study applies the temperature-based formu-
lation to analyze the phase-change problem. As was
mentioned above, the major difficulty of this formu-
lation is that the temperature gradient at x = s(¢)
is discontinuous and s(¢) is unknown a priori.

The present study uses the FDM in space domain
and the Laplace transform technique for the time-
dependent terms to analyze the phase-change
problem. The present solution marches in time. This
solution at a specific time interval is obtained by
employing the inputs from the previous time step. In
the present method, s(¢) at a given specific time ¢ is
regarded as constant, and then the length s(7) is taken
at the increased value for the next time interval. In
other words, s{7) at the previous time step is used to
determine the new location of the moving interface.
Successive iteration at a specific time interval is also
used to correct the inputs from the previous time
step. This procedure is followed until the boundary
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Er  radiation variable, =bae0? /k

'} global force vector

h heat transfer coefficient

[K] global thermal conductance matrix in the
transformed domain

k thermal conductivity

L latent heat of the material

/ distance between two nodes

" total number of nodes

P Laplace transform parameter

Q surface heal flux

q dimensionless surface heat flux. @bk,
S location of the solid—liquid interface

St Stefan number, ¢0,,,/L

s dimensionless focation of the solid-liquid

interface, S/h

NOMENCLATURE
Bi Biot number, Abjk T dimensionless temperature
b reference length 7.  dimensionless ambient temperature. (0,
¢ specific heat of the material T previously iterated tempcrature

dimensionless time, kt/b*pc |

~

u suggested heat flux at the interface
X space coordinate
N dimensionless space coordinate, X/b.

Greek symbols

& cmissivity of the material
0 temperature
0, ambient temperature

{. environment temperature
0.,  melting temperature

A parameter to determine the value of s
0 density of the material

a Stefan—Boltzmann constant

T time.

conditions at the interface are satisfied. In this com-
putational procedure, the value of (87,/0x)|,_,, is
first assumed to be constant at a given specific time
interval [¢,—A¢;, ;] while solving the phase-change
problem. Then, s(z,) can be predicted. The above com-
putations must be performed from ¢ = 0 initially. To
the best of our knowledge, only Tamma and Railkar
[5] and Ku and Chan [6] have applied the Laplace
transform technique to analyzc the phase-change
problem. Tamma and Railkar [5] introduced the
transfinite clement methodology in conjunction with
the enthalpy formulation for a phase-change problem.
It can be seen from Fig. 13 in ref. [5] that the prediction
of s(r) did not agree well with the exact solution.
Moreover, Tamma and Railkar [5] also did not inves-
tigate the nonlincar phase-change problem. Ku and
Chan [6] proposed a generalized Laplace transform
technigue to obtain a closed-form solution for linear
phase-change problems. Similarly, as stated in their
work [6], their method also had a severe limitation
to the nonlinear problems caused by temperature-
dependent thermal properties or by nonlinear bound-
ary conditions.

The one-dimensional phase-change problem in a
finite region subjected to radiative and convective
boundary conditions has been solved by Chung and
Yeh [7] and Yan and Huang [8]. They respectively
applied Biot’s variational method and Goodman’s
integral technique [7] and the regular perturbation
method [8] to analyze the above problem. In the
present investigation, the present hybrid method is
extended to such a problem arising from aerodynamic
and radiative cooling or heating. Both the tem-
perature distribution and the location of the moving
mterface are to be determined. As will be seen later,

the location of the moving interface obtained by the
present method agrees with that of Chung and Yeh

(7).

MATHEMATICAL FORMULATION

A semi-infinite solid initially at its solidification (or
melting) temperature T, is confined to a half-space
(X > 0). The governing equation for the temperature
distribution in the liquid region can be written as

a0 o0
pe =k, in 0<X<S), >0 (1)
ot ax-

where S(7) is the location of the solid-liquid interface.

At time 7 = 0, the boundary surface at X =0 is
subjected to the following boundary condition and is
maintained at that condition for t > 0:

¢l

—k = QA =0 +oe(0: ~0%) at X =0
(2)

where £ is the heat transfer coefficient, Q(tr) denotes
the imposed surface heat flux, o is the Stefan—Boltz-
mann constant and ¢ is the emissivity of the material.
For simplicity, both the ambient temperature 0, and
the environmental temperature 6, are assumed to be
equal in the present analysis.

The coupling conditions at the interface X = S(r)
are
>0 (3a)

0X,1) =0, at X =S(1).
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00
k= . = 3
kﬁX pLdr at X=S(), >0 (3b)
where L is the latent heat of the fusion.
The initial conditions are
0X,t)=0, for t=0, in X>0 (4a)
S(t)=0 for 7=0. (4b)
We introduce the dimensionlcss variables
T 0 . 0, X
0. T 0. T b
kt S . hb Ob
[—E%, 3—1;, Bl—'k, q—mn
Er boel)?, and St = B,
r = P an = L

where b denotes an arbitrary reference length. Insert-
ing these dimensionless variables into equations (1)—
(4) leads to the following dimensionless differential
equations :

T_TT i o< (>0 (5
2T At in <x<s(n, t> (5a)
OT— H+Bi (T,—T
— 5 = A +Bi(T,—T)
FE(TY=T% at x=0 (5b)
T(x,) =1 at x=s(1), t>0 (5¢)
oL =5, >0 (s
Tox T srq & YT 0> d)
Tx,)=1 and s()=0 for t=0 (5¢)

where St is the Stefan number, which signifies the
importance of sensible heat relative to the latent heat.

The linearized form of equation (5b) using Taylor’s
series approximation [9] is

-

cT .
=4O+ BI(T,—T)

+Er (T —4T*T+3T% at x=0 (50

where T denotes the previously iterated temperature.
A brief illustration of the present hybrid method
has been described in our previous works [9, 10]. To
avoid duplication, its computational procedures are
not presented in the present study.
In the present study the value of (67/0x)|,_, is
assumed to be constant at a given time interval, i.e.
éT

- —u in

o t, <1< L+AL
OX |y=s(n

i=1,2,...

(6)

where 1, =0, Ar,=1t,,,—¢, and u is constant at a
specific time interval and is determined by iteration.
Thus the moving boundary velocity, ds/d¢, at a specific
time interval can be written as:
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ds
— = St-u. 7
& N
To estimate the location of the moving interface, a
simple finite difference approximation is used, i.e.

ds () —s(t)

—(f) ~ - L <t<t+AL,
dt() At

i=1.2..... (8

Substituting equation (8) into equation (7) yields the
value of s(,, ) as:

s(t 1) = s(6)+us St At 9)

where s(7;) is the location of the moving interface at
=1,

The value of u is unknown for any time interval
and is cvaluated by iteration. However, once the value
of u is determined, the location of the solid-liquid
interface will be obtained from equation (9). In the
present study, two different values of u at a specific
time interval are guessed arbitrarily, and then the
Secant method is applied to determine a new guessed
value of u. This computational procedure is repeated
until the boundary conditions at the location of the
solid-liquid interface are satisfied.

SOLUTION METHOD

The Laplace transforms of equations (5) and (6)
are respectively

T

ﬂ\2=p7~1——1 0<x<s(t) (10)
CX
and
o . (T, -
———=g§+Bi| 2T
6 p
| - o
+Er[p(T:+3T4)—4T3TJ at x=0 (lla)
0T
S Al v=s) (11b)
éx p
- 1
T(x,p):p for x=s(t) (11c)

where 1, denotes a specific time.
The Laplace transform of a function ¢(x, 1) is
defined as

d(x.p) =£ e plx 0y dr (12)

where p is the Laplace transform parameter.

The discretized forms of equations (10) and (11),
using the central difference approximation, are given
as
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I = & N o P
_2'/'(T:*T()):‘[+BI '/)’*7|/

1 i} .
+Er[p(T;‘+3Tf)—4T‘T,} (14a)

I - u
“2/(T,,+|*Tu I):/) at  x =s(i) (14b)
- i
T, = (14¢)
P

where / denotes the distance between two nodes and
is uniform in the present study.

The arrangement of equations (13) and (14) gives
the following vector -matrix form as

[KIiT} = (/] (15)
where
B, C,

A-B-(C,

[K] = (16a)
Ay B Gy
4,8,
:T}l::TIT:-“fu 1f//; (16b)
:/}l = {/‘1/‘, ',/u |f,} (]6C)
B, = —2—pl* =20 Bi—8FriIT; (led)
¢, =2 (16e)
2/ 2/ -

fi= 2§~ ) T, Bi— ) Er (T*43T%H (16N
A,=C =1, i=2.3..... n—1 (16g)
Bi=—-2—-pl, i=23..., n—1 (16h)
fi=—1 =23, n—1 (161)
4,=2 {16])
B, =—-2-pl- (16k)

2/
= u—I (1ol

P

In cquation (15), the thermal conductance matrix
[K]is an (1 x 1) band matrix with complex numbers.
{T‘} is an (nx 1) vector representing the unknown
transformed temperatures and the thermal load { /]
1s an (n x 1) vector representing the forcing terms.

In the work of Rubinsky and Cravahlo [11] for the
phase-change problem, the temperature distribution
must be found at time (7,4 A¢f;) in order to continue
the iteration procedure. Since their scheme [11] is not
self-starting, the location of the solid-liquid interface
at the first time step must be found by using Neu-
mann’s exact solution for a semi-infinite medium. In
fact, the exact solutions for the phasc-change prob-
lems are limited to only a few simple cases. As will be
seen later, the present study does not need to perform
this procedure. In the present method, a specific time
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1, and the value of (@T7¢x)], . ., are initially assumed.
where t, = t,+ At i=1,2,.... Then, an explicit pre-
diction of s(r,) can be obtained from cquation (9).
Furthermore, solving equation (15) determines the
temperature at the interface 7.(s(7.).7,). A newly
gucssed value of w 1s updated by using the Secant
method. This single procedure is itcrated until the
cquality of the boundary condition at the moving
interface is satisfied within 10 *. Thesc results will be
applied to produce the predictions of i and s(7) at the
next time step.

ILLUSTRATED EXAMPLES

In all of the computations, the step sizes Ax =
s(r,)/10 and Ar = /100 arc used.

Example |
A liquid initially at its melting temperature 6,
(0, > 0) is confined to a half-space (x > 0). For time
t > 0, the temperaturc of the boundary surface at
x =0 1s kept al a constant temperature () = 0. The
cxact solutions for the temperature distribution in the
solid region and the location of the moving interface

are [2]
0 erf (x/21)

T —

T, erf() (an

s(1) =241 (18)

where the exact value of 2 is determined [rom the
following transcendental equation :

NE7X erf (J) = SI.

(19)

Table 1 and Fig. 1 show a comparison of / for
various St values for the exact solution, the present
solution, Goodman’s integral solution [12] and the
coupled integral solution [13]. For this problem two
or three iterations are required to obtain the present

Table 1. Comparison of Z for various St values

/
Coupled
St Exact  Present Integral [[2] integral [13]}

0.020 0.1 0.09990 0.09999 0.09975
0.082 0.2 0.20225 0.20224 .20044
0.191 0.3 0.30855 0.30730 0.30191
0.356 0.4 0.41855 0.41528 0.40429
0.592 0.5 0.52841 0.32583 0.50778
0.920 0.6 0.63550 0.63746 0.61154
1.373 0.7 0.73970 0.74902 0.71489
1.996 0.8 0.84130 0.85846 0.81595
2.858 0.9 0.94000 0.96426 0.91295
4.060 1.0 1.03640 1.06482 1.00372
5.755 I.1 113115 1.15880 1.08624
8.172 1.2 1.22485 1.24499 1.15877
11.663 1.3 1.31800 1.32265 1.22035
16.776 1.4 1.41140 1.39144 1.27080
24.370 1.5 1.50520 1.45139 1.31073

35.817 1.6

1.60055 1.50286

1.34130
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1.2 =
X 08
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- present
B integral [12]
04{ x coupled integral U133

| l ] J
27 36

18
st

F1G. 1. Comparison of A for various St values.

solution at each time step. It is seen that the present
solution agrees with the exact solution. The maximum
difference of 4 is found to be within 6% between the
analytical solutions and the present solutions.
However, this difference for 4 will be reduced if a
suitable time step At can be chosen. Further com-
parison is also made with the numerical results by
using the method of Murray and Landis [14] for the
location of the moving interface against time, as
shown in Fig. 2. Excellent agreement is found between
the present results and those of Murray and Landis.
It can also be found that both Goodman's integral
solution [12] and the coupled integral solution [13]
depart from the exact solution for larger St values.
Figures 3 and 4 show a comparison of the temperature
distribution in the solid region for various St values
at various selected times for the exact solution, the
present solution and Goodman’s integral solution. It
is seen that the present solution is in good agreement
with the exact solution over all ranges of the Stefan

025
[ _
020 /i/
x/
o151 /
G / x exact [2]
i & &  present
010 variable space
P network
== {ixed spoce
network Li41
[ole’s3 o
I | L I I } ! }
o] 100 200 300 400 500 &00 70O 8OO
Tis)

FiG. 2. Comparison between the present results and those of
ref, [14] for the location of the moving interface with time.
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FiG. 3. The temperature distribution in the solid region at
various selected times when St = 0.858.

number. However, the difference of the temperature
distribution between the exact solution and Good-
man’s integral solution increases with St and 1,
especially near the location of the solid-liquid inter-
face.

Example 2

This example considers the melting of a semi-infi-
nite bar initially in the solid phase and at its sol-
idification temperature. The melting starts at =0
due to a dissipated heat flux across the boundary
x=0,1c

“at x=0, t>0. (20)

=

Furzeland [15} has determined the analytical solu-
tion of this problem for the temperature distribution
in the hiquid region and the location of the moving

10— 8] [w]
$t=002 4 o
(o]
o8 St=1.37 /5
/4
4 otz 858
06
/3 4
4
T I’
73 ‘4
04 ' e exact [23
-=» present
B integral [12]
2
| l { |
o} 05 1O 15 20

X

F1G. 4. The temperature distribution in the solid region for
various S7 values at 7 = 1.
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Table 2. Comparison of s(7) at various selecled times when

Sr=1
s(7)
! Exact [15] Present Relative error (%)

0.1 0.1 0.1000

0.2 0.2 0.2000

0.5 0.5 0.4997 0.06

1.0 1.0 0.9966 0.34

1.5 1.5 [.4868 0.88

2.0 2.0

1.9690 1.55

interface when Sr = 1.0. These results are respectively
given as follows:

Tivg)=c¢ " 2n
and
s(t) =t

Table 2 shows a comparison of s(r) between the
exact solutions and the present solutions. The tem-
peraturc distribution in the liquid region at various
selected times when S7 = 1 is shown in Fig. 5. It can
be found from Table 2 and Fig. 5 that the present
hybrid method has good accuracy for linear phase-
change problems.

Example 3

Example 3 considers the same conditions as Ex-
ample 2 above, except that the bar is subjected to a
constant heat flux condition at x = 0 as

cT

= —1 at x=0, >0 (23)

cx

Lozano and Reemtsen [16] have presented a closed-
form solution of this problem. Their results arc
applied to test the accuracy of the present method.
The comparison between their results [16] and the
present solutions is shown in Table 3 when S1 = 0.2
It can be seen that the present method can still yield
considerable accuracy for Example 3.

&,

——— exact [15]
=== present

|
o] 05 1.0 15 20
X

FiG. 5. The temperature distribution in the liquid region at
various selected times when Sz = 1.
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Table 3. Comparison of s(7) at various selected times when

N )

{ Exact {16] Present Relative error (%)

0.01996

0.1 0.01998 0.100
0.5 0.09903 0.09951 0.485
1.0 0.19624 0.19802 0.907
1.5 0.29178 0.29567 [.333
5

fo=]

0.38578 0.39236 1.706

Example 4

The problem of predicting solidification rates has
been widely used in many fields ranging from frecze-
drying to metal casting. When the solidification takes
place at high temperature, such as in the casc of metal
castings, radiative and convective heat transfer are
both significant mechanisms of cooling at the fixed
surroundings. To further show the accuracy of the
present hybrid method for such problems, a problem
subjected to the nonlinear boundary condition at
x =0 is studied. The boundary condition at x = 0
dissipates heat by convection and radiation into a
medium at 0,. This example is the same as Example
I, cxcept that the liquid is subjected to the nonlincar
boundary condition at x = 0. Thus the boundary con-
dition at x = 0 can be written as

cT

-

(R Y

Bi-(T—T\)+ Er-(T*—T}). (24)

Three or four iterations are required to obtain a
convergent result at any selected time when the present
method is applied to solve Example 4. The obtained
results are shown in Figs. 6 and 7. The temperature
distribution in the solid region at any selected time for
various Er and T, values is shown in Fig. 6 when
St = Bi = 1. Figure 6 shows that the surface tem-
perature at ¥ = 0 gradually decreases with increasing
time and Er. In the absence of an exact solution in the
cxisting literature, approximate solutions obtained by

1.0

08

7 06
4,

04

o2 1 | | I ]

FiG. 6. The temperature distribution in the solid region at
various selected times when Bi = | and S = 1, 10.
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x  Biot's
varigtion [71
—7,=025

o8
——T7,=0

06

o4 —
02—
7
o,

Fi1i. 7. Variation of S(¢) with 7 for various Er values when
Bi=5St=1.

Biot’s variational method and the heat balance inte-
gral technique were found and compared with the
present solutions. Results shown in Fig. 2 of ref. [7)
are not plotted in Fig. 6. However, a comparison of
Fig. 2 in ref. [7] and Fig. 6 shows that the temperature
history at the radiation and convection surface
obtained by the present method agrees with that
predicted by Biot's variational method when
Er == St =t = Bi = 1. Further comparison is made
for Er = Bi=1=1and Sr=10. It can be seen that
the difference between them will become great for the
case of St = 10. However, excellent agreement can be
obtained between the present result and that predicted
by the heat balance integral method. This discrepancy
results from the temperature profile chosen in the solid
region. It is clear that the temperature profile in the
solid region for Er = Bi=1t=1and St =10 isnot a
linear approximation. Figure 7 shows the variation of
s(t) with the dimensionless time for various Er values
when St = Bi = 1. The solidification rate can easily
be evaluated from the slope of the curves shown in
Fig. 7. In addition, Fig. 7 also shows that the present
results are in good agreement with those obtained
by Biot’s variational method. This comparison also
implics that the present results for s(¢) agree with
those of Goodling and Khader [17] obtained by an
FDM. The above comparisons show that the appli-
cation of the Laplace transform technique to such
problems is no longer limited to phase-change prob-
lems subjected 1o linear boundary conditions.

CONCLUSIONS

The present study introduces a new numerical treat-
ment for one-dimensional phase-change problems.
Both the temperature distribution in the solid (or
liguid) region and the location of the moving interface
are obtained. It is seen from some illustrated examples
that the present hybrid method has good accuracy
even for the phase-change problem with the nonlinear

3351

boundary condition. For this problem with the non-
linear boundary condition, Taylor's series approxi-
mation must first be used to linearize the radiative
term. In the present analysis, the hybrid method is
applied only to analyze the problem of melting {or
solidification) in a semi-infinite slab. However, it is
sufficiently general for extension to more involved
phase-change problems. Analysis involving tem-
perature-dependent properties is underway. A similar
technique can be used for one-dimensional phase-
change problems in spheres and cylinders.

REFERENCES

i. S. Fukusako and N. Scki, Fundamental aspects of ana-
lytical and numerical methods on freezing and melting
heat-transfer problems. In Annual Review of Numerical
Fluid Mechanics and Heat Transfer (Edited by T. C.
Chawla), Vol. 1, pp. 351-406. Hemisphere, Washington,
DC (1987).

2. M. N. Ozisik, Heat Conduction. Wiley-Interscience, New
York (1980).

3. H. S. Carslaw and J. C, Jaeger, Conduction of Heat in
Solids, 2nd Edn. Clarendon Press, London {1959).

4. V.R.Voller and M. Cross, Accurate solutions of moving
boundary problems using the enthalpy method, /nz. J.
Heat Mass Transfer 24, 545 -556 (1981).

5. K. K. Tamma and S. B. Railkar, Transfinite element
methodology for non-linear/linear transient thermal
modeling/analysis—progress and recent advances, fnt.
J. Numer. Meth. Engng 25, 475-494 (1988).

6. J. Y. Kuand S. H. Chan, A generalized Laplace trans-
form technique for phase-change problems, ASME J.
Heat Transfer 112, 495 497 (1990).

7. B.T.F. Chungand L. T. Yeh, Solidification and melting
of materials subject to convection and radiation, J.
Spacecraft 12, 329-333 (1975).

8. M. M. Yan and P. N. S. Huang, Perturbation solutions
to phase-change problem subject to convection and radi-
ation, ASME J. Heat Transfer 101, 96-100 (1979).

9. H. T. Chen and J. Y. Lin, Hybrid transform technique
for non-linear transient thermal problems, /nt. J. Heat
Mass Transfer 34, 13011308 (1991).

10. H. T. Chen and J. Y. Lin, Application of the Laplace
transform to nonlinear transient problems, Appl. Math.
Modeling 15, 144151 (1991},

{1. B. Rubinsky and E. G. Cravahlo, A finite element
method for the solution of one-dimensional phase-
change problems, fnt. J. Heat Mass Transfer 24, 1987
1989 (1981).

12. T. R. Goodman, The heat-balance integral and its appli-
cation to problems involving a change of phase, ASME
J. Heat Transfer 80, 335--342 (1958).

13. 1. Mennig and M. N. Ozisik, Coupled integral equation
approach for solving melting of solidification. Int. J.
Heat Mass Transfer 28, 1481-148S (1985).

14. W. D. Murray and F. Landis, Numerical and machine
solutions of transient heat-conduction problems involv-
ing melting or freezing. Part I—method of analysis and
sample solutions, ASME J. Hear Transfer 81, 106-112
(1959).

[5. R. M. Furzeland, A comparative study of numerical
methods for moving boundary problems. J. Inst. Math.
Appl. 26, 411-429 (1980).

16. C. J. Lozano and R. Reemtsen, On a Stefan problem
with an emerging free boundary, Numer. Heat Transfer
4, 239-245 (1981).

17. 1. S. Goodling and M. S. Khader, One-dimensional sol-
idification with a radiative boundary, Proc. 10th South-
castern Seminar on Thermal Science, pp. 286-303 (1974).



